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A TREATMENT OF SOME PERIODIC POTENTIAL PROBLEMS 

by 

Dan McColl and 0. C. Simpson 

ABSTRACT 

A new method of treating periodic potential problems which has 
some pedagogical Interest and appears to offer some simplifications 
Is described. The classical Kronlg-Penny problem Is treated as an 
Introduction to the applications after which the method Is used to 
obtain the band structure for the periodic potential, the "parabolic 
scallop potential", consisting of a linear chain of segments of 
vertical parabolas opening upwards. The general problem for the one-
dlmenslonal periodic potential with reflection symmetry is then 
treated and Illustrated by application of the method to the linear 
chain of inverted parabolic segments. As a third example the band 
structure Is obtained for the "hip-roof" potential. Finally, the 
three-dimensional problem is discussed. 

1. Introduction 

In the following discussion we consider Schroedinger problems 

involving the motion of a single particle in an infinitely periodic 

potential. Thus 

V(? +1) = V(r) , (1) 

where v(r) is a real potential involving only the spatial coordinates, 

r = (x,y,z); i.e. V(r) is a scalar point function, and & is any 

vector joining equivalent points of a three-dimensional periodic 

structure. The appropriate steady state Schroedinger equation for 

these periodic potential problems is, 

- Is V ^ + f^(^) - E] ̂  = 0 , (2) 

where f = ^(r) is the elgenfunction for the state of the system of 

total energy E and V(r) is the periodic potential. To complete the 



-1-

solutlon of the problem, one must select from all of the functions 

^(r,E) which satisfy equation (2), those solutions which according 

to accepted quantum mechanical principles have certain "well-behaved" 

properties. For quantum mechanical systems such well-behaved solu­

tions tKr,E) do not exist for all values of E. On the contrary, well-

behaved solutions exist in general only for discrete energy levels 

or for bands of energy in the case of periodic potentials. 

2. Criteria for the Selection of Proper Functions 

The proper criterion for the selection of the appropriately 

"well behaved" (physically useful) solutions, ̂ (r,E), of equation (2), 

where V(r) is periodic, has been pointed out by Bloch in an Important 

theorem. The statement of this theorem is as follows: 

Theorem I. The physically useful solutions of the 

Schroedinger equation with a periodic potential are of 

the form 

*ĵ (?) = uĵ {r) e^^-^ , (3) 

where Ui-(r) is a function which is periodic in x,y,z 

with the periodicity of the lattice, and depends in general 

on the real wave vector Ic. 

The solutions (3) are known as Bloch functions. The allowed energies 

are determined by them. The unwanted or "ill-behaved" solutions 

not belonging to the set (3) go to Infinity at r(x,y,z) = «= in an 
2 

exponential way. Such unbounded solutions do not allow the calculation 

^F. Bloch, Z. Physlk, 52, 555 (1928). 

2 
A. H. Wilson, "The Theory of Metals", Cambridge Press (1953), 

pp. 21-25. 



of quantum mechanical averages of operators which correspond to 

physically observable quantities. 

According to the Born Interpretation, the value of the square 

of the modulus of an elgenfunction, |^(r)| , measures the particle's 

position probability density. Accepting this Interpretation, it 

seems clear from a strictly physical point of view that the probability 

density for a steady state must be the same at all points of a periodic 

lattice which are equivalent with respect to the operation of translation. 

This gives rise to the following theorem: 

Theorem II. Any physically suitable solution ^(r,E) 

of equation (2), where V(r) Is a periodic potential, 

must satisfy the relation 

|^(r + J)\^ = |*(?)|2 , (4) 

where I is any lattice vector Joining equivalent 

points of the periodic structure. 

Theorem II furnishes a somewhat more physically satisfying criterion 

for the selection of the appropriate solutions of (2). It is 

obvious that if t(r,E) obeys equation (3), it also obeys {k). Hence, 

Theorem II is a corollary of Theorem I and equation (4) is a necessary 

condition for physically acceptable solutions. We show in later 

discussion that (4) is also a sufficient condition for one-dimensional 

problems. However, for three dimensional problems, we need an 

additional criterion. 

In addition to the physically Interpretable position probability 

density |^(r,E)| of quanttom mechanics, there is a second quantity 

determined from the eigenfunctions which behaves mathematically in 

an analogous way to the classical current density of fluid flow. This 

- - 3 
quantity Is called the probability current density S(r,t). Its 



definition in terms of the eigenfunctions is 

S(r,t) = ^{f\-^ -fvr} . (5) 

where the asterisk indicates the complex conjugate quantity and the 

bar over S denotes Its vector nature. One can easily show from 

the differential equation (2) that the time independent S(?) is 

dlvergenceless. That is, all steady state solutions, whether 

physically acceptable or not, satisfy the relation: 

V-S(5) = 0 . (̂ ) 

The Bloch functions (3) satisfy (6), by virtue of being solutions 

of (2). However, the Bloch fimctions are restricted to those 

solutions which make the probability current density periodic 

with the periodicities of the lattice. Thus 

f = u(r) e^^°^ ; u(r + 2) = u(r) 

llc-r 
\7f = (vu + lIcu) e 

^r = (vu* - ihi*) e-̂ -̂̂  

S = -gjĵ j [u*vu + 2ilcuu* - u\7u*] 

(7) 

Hence 

S(r +1) = S(r) . (8) 

Equation (8) automatically holds for one-dimensional problems,* 

and presents no additional selection criterion beyond that of 

equation (4) for physically acceptable solutions. However, it does 

give a further restriction over equation (4) for three dimensional 

-3 

-•See for example, "Quantum Mechanics" by Leonard Schlff, p.23, 

McGraw-Hill Book Company, Inc. (1949). 

* - S^ 
V°S = 0 ^ ^ = 0 j S = constant. 
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problems. The physical basis for the criterion (8) is not as clear 

as the basis for (4), although the analogy of the quantum mechanical 

probability current density S(r) to classical flow densities 

certainly makes criterion (8) appear reasonable. In any case. In 

Appendix I, we prove the complete equivalence of the Bloch criteria 

and the two criteria (4) and (8) for physically acceptable solutions. 

These alternate criteria are repeated in the following theorem: 

Theorem III. The physically suitable solutions 

^(r,E) of equation (2), where V(r) is a periodic potential, 

are those and only those solutions which satisfy the 

following two relations: 

|t(? + i)|2 = |^(?)|2 , (4) 

S(r + I) = S(?) , (8) 

where i is any lattice vector Joining equivalent points 

of the periodic structure. 

Thus, (4) and (8) are both necessary and sufficient conditions for 

the eigenfunctions to obey the Bloch criteria; we may use either 

equations (4) and (8) or alternately (3) for the selection of 

physically suitable eigenfunctions for the periodic potential 

problem. 

3. One-Dlmenslonal Problems - Periodic Potential - Even Potential 

Let us consider one-dimensional periodic potential problems 

for which v(x) is an even fimction about some lattice point and 

about every equivalent point. We choose this set of symmetry 

points for convenience to be 0, ± i, ± 2£,... Hence we now have 
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/(x) +{v(x) - E } t(x) = 0 , (9) 

(10) 
V(x + i) = V(x) ' 

and (xx) 
V(x) = V(-x) • ^^^' 

This further restriction on V(x) is not very limiting since practically 

all physically interesting potentials will have reflection symmetry. 

From the physically intuitive point of view, it might seem 

quite reasonable to expect that the position probability density 

for a physically acceptable steady state solution would have the 

same values at equal distances on opposite sides of reflection 

symmetry points. In other words, one might expect that for 

V(x) = v(-x), we would also have 

|t(-x)|2 = |^(x)|2 , (12) 

since the system has no way of making a preferential decision with 

respect to the probability of being at these equivalent points. 

In this connection we prove in Appendix II the following theorem: 

Theorem IV. Physically acceptable solutions of the 

infinitely periodic potential problem obeying the 

Bloch conditions (3) or the periodicity condition 

on the probability density (4) also obey the evenness 

relation 

l^(x)|2 = |^(-x)|2 , (13) 

when V(x) is an even function about x = 0. 
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(I4a) 

(14b) 

(14c) 

(l4d) 

(l4e) 

(l4f) 

Actually, as pointed out in Appendix II, an exception to 

Theorem IV can arise if both a symmetric and an antisymmetric 

solution exists for the same eigenvalue such that both are 

periodic or both antiperlodlc. Thus, if f-^ and f,^ are the anti­

symmetric and symmetric solutions for the eigenvalue E, we have, 

for a = ±1, 

^̂ (x +i) = af^M 

f^{x +e) = a^2(x) 

^(x) = A^^(x) + B^2(x) 

t(x + i) = at(x) 

\f{x + i)|2 = l*(x)|2 

k(-x)|2 / |TKX)|2 

The last Inequality holds if A and B are completely arbitrary. An 

equality arises if AB* + .A*B = 0. 

Wilson^ points out that the periodic and antiperlodlc solutions 

are Just the solutions which separate the allowed and the forbidden 

bands. Hence the above exception, if it exists, occurs on the edge 

of a band, whereas within an allowed band the relation \f{x)\ = l^(-x)|' 

is certainly valid. On the edge of a band the relation is also 

obeyed for those periodic and antiperlodlc solutions which are either 

purely symmetric or purely antisymmetric [and in addition for those 

solutions of mixed symmetry which have the form fix.) = a^^(x) ± ib^g(x) 

since AB* + A*B = 0 for those cases also.] If there is no relation 

on the phases of the coefficients in equation (l4c), then an exception 

could arise to the reflection symmetry property of |^(x)| . This 



might take place, for example, if two bands were to touch or cross 

for some value of the parameters (lattice period, etc.) of V(x). 

Thus, for example, a lower level of odd symmetry of an adjacent 

higher band and an upper level of even symmetry of the lower band 

might move together for some value of the lattice parameter giving 

a double degeneracy. In any case, since A and B are perfectly 

arbitrary, no energy structure would be lost by choosing AB* + A*B = 0, 

thereby removing the exception to Theorem IV. IMrther discussion 

regarding the symmetries of the eigenfunctions at the band edges 

will be deferred until the applications are described. 

4. Properties of the Logarithmic Derivative — One-Dlmenslonal 

Periodic Potential Problems 

The problems we wish to solve are subject to the following 

set of conditions: 

^ / + {v(x) - E} ^ = 0 , (15a) 

V(x) is real , (15b) 

V(x + I,) = V(x) . (15c) 

Because of the condition (l5c) - a periodic structure - we have 

seen that the position probability density is periodic. Furthermore, 

the probability current density S(x) is constant, hence periodic, 

for these one-dimensional problems. Therefore 

3 - ^ i^S - ^S )̂ > (16) 
is the same for all values of x, for a given ^(x,E), and furthermore 

S is real since it is the sum of complex conjugates. Let us divide 

equation (l6) through by ^*(x)-'^(x), an operation valid except where 
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^(x) vanishes, [if ̂ (x^) = 0 at some point x^ then by (l6) S{x^) = 0 

which requires S(x) = 0 and • A =0.] Thus, we have 
\f\ 

S_ _ il ,1 d̂  1 dt ^ /^7^ 

2im f̂ dx " F' d5r^ • ^ " 
Also, 

J ^ d ,^*v ^ (1 d£ + 1^ djT) . (18) 

It follows from these equations that 

1 dt 1 J, d|»|^ , im S /•,Q̂  
? d 5 E = 2 ] ^ - 1 3 r + ̂ ]7J2 • (̂ 9̂  

Since It I and its derivative are periodic with period A» w Hx ̂ ® 

also periodic with period i_. Let us set 

| f = P = ̂ R-^i^I • (2°) 

Both P„ and P, are real periodic functions of period i. 

It is clear from (20) that the imaginary part of P_ is related 

to S: *, o 

S = 1 Pjltl^ . (21) 

Since \f\ has the tinits of number of particles per unit volume and 

S has the units of particle flux, particles/cm sec, iiPj/m must have 

the units of velocity and, therefore, P̂  has the units of momentum. 

Prom the definition of P(x) in (20) and the Schroedinger 

equation, we obtain the following eqtiation; 

P' + p2 + •% (E - V) = 0 . (22) 

Thus, the second-order linear Schroedinger equation has been replaced 

by a first order second degree equation of the standard Ricatti form. 

If one has a particular solution of (22) then the general solution 

can be found by simple quadrature. 
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Our problem now is to find solutions of (22) in the interval 

- - < X < - , or some equivalent interval, which can be "Joined" 

to identical solutions in adjacent cells to form a periodic P(x). 

After this has been done, the eigenfunctions can be obtained by 

quadrature of (20). 

For example, if P-(x) is not identically zero, then we have 
'I' 

P. = - 5 ^ > (23) 

and since S = constant, 

P _ 1 _ d|t|2 _ J : _ ^ (24) 

PR = Jy-^ —dSr - - 2Pj dx ' 

from which it follows from (19) that 

int = - I ^nPj(x) + i^^Pj dx + C , (25) 

We know also that in this case t(x) cannot become zero at any point, 

for if it did, then by equation (l6), S s 0, and Pj(x) = 0 contrary 

to assumption. Hence we conclude from (23) that P-p(x) can never be 

infinite. Furthermore, if Pj(x) = zero at some point x then by (23) 

either S = 0 at that point, and consequently everywhere, from which 

PJ = 0, or t(x) goes to infinity in accordance with (26). Obviously, 

we must restrict our solutions of P and hence of P such that 

infinities of t(x) either do not occur or if they do, that they be 

such that one can calculate the probability of finding the particle 

in a finite interval including the Infinite point of t(x). That is 
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X^4a 

/ 
t(x)|2 dx = finite value (27) 

^o-^ 

for a finite even if t(x ) -> «> . 

If P-(x) = 0 in our solution, then t(x) is given by: 

X 

L Pp(x) dx 

= Ae""^ , (28b) 

where A is arbitrary and can be chosen real. Hence t(x) can be 

taken to be a real function. 

It is useful to compare (26) and (28b) with the Bloch functions. 

Since P is periodic, then both Pj, and P^ are periodic. The integral 

?j dx will give, in general, a x + a periodic function — as can be 

seen easily by thinking of the Fourier series development of 

P^(x). (P.̂ (x) is never inflnltel) The periodic part can be combined 

with the periodic pre-exponentlal l/^''pr(x) In equation (26) to 

give a Bloch periodic u(x) and a Bloch k = a^. 

In the case where ?j{x) = 0, P(x) = Pĵ (x) is real and periodic. 

However, contrary to Pj(x), PD(X) is not confined to finite and 

continuous functions. Being periodic Pj,(x) must have an even number 

of changes in sign In a lattice period. These changes in sign can 

be of the regular variety in which Pp(x) goes through zero in a 

continuous way corresponding to t'(x̂ )̂ = 0 for x -> x^. (See equation 

(28a).) Or PT,(X) can change sign in a discontinuous way Jtjmping from 

-co to +"> as X goes through x . This latter behavior leads to t(x ) = 0 

as can be seen from equation (28b), Jumps of Pr)(x) from a finite 

negative value to a finite positive value at some point x cannot 

take place, for this would lead to a non-zero ^(XQ-) and an eqtial 
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non-zero t(x -1-) as limits for t(x) as x -» x^ from the left and 

right. However, the non-zero t' limits for t'(x), t'(x^-) and 

I/'(X +), would not be equal. (See equations (28a) and (28b).) 

d_ 
dx 

t\-o-

This would mean that ̂  Itl^ = 2t't (t is real) is not continuous 

across x . Such a situation is contrary to the continuity conditions 

of quantum mechanics (p. 29 of ref. 3) which require both t(x) and 

f (x) to be continuous across any point x^ lying in an Interval in 

which V(x) is finite. If v(x) is infinite at x^, then f{x^) = 0 
p 

and '^j,^' also matches across x . [As will be seen in the next 

section, the requirement of the continuity of - ^ — , vltl for 

three-dimensional motion, is somewhat less restrictive than the 

conventional matching conditions. However, the less restrictive 

condition leads to nothing new which is physically observable.] 

We conclude therefore that jumps in PR(X), if they occur, are 

infinite in nature. Hence for these cases, the Fourier series 

development of Pr.(x) cannot be carried out. Nevertheless, we can 

easily see from the behavior of Pr>(x) what the equivalent Bloch k 

will be. Changes in sign of Prj(x) taking place by the continuous 

process do not lead to a change in sign of t(x) but changes in sign 

of Pp(x) by the discontinuous process do lead to a change in sign 

of t(x). In fact, one can easily convince himself that if the 

discontinuous variety occurs, they must alternate with the continuous 

variety. Since t(x) is real, the periodicity of |t(x)|2 leads to 

k = 0 for Pĵ (x) continuous and k = 0 for an even number of discontinuous 

changes in Pĵ (x) and k = ± j for an odd number of discontinuous 

changes in sign per period of Pj^(x). These are the only Bloch k 

values allowed. 
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5. Matching Conditions at Discontinuities in the Potential Function 

Consider a potential function which has a finite point 

discontinuity illustrated in Figure 1. 

t 
V(x) Region 1 

Region 2 

Figure 1. Discontinuous Potential 

It is customary to require t(x) and t'(x) to match separately 

across the discontinuity. Such matching conditions will certainly 

insure the matching of the following physical quantities 

lt(x)|2 t(x) t*(x) 

S 2im 

d(tt*) _ v,*dt . „ 
dx ~ "̂  dx ^ ''dx 

6x ~ ^6x ' 

dt* 

(29a) 

(29b) 

(29c) 

With these matched, we see from (19) that P = (Pĵ , P^) is also 

matched. Prom the physical intuition point of view, it would 

seem equally reasonable to take as the quantities to be matched 

Just (29a, b, and c). Equivalent to the matching of (29a, b, and c) 

is the requirement that P = (Pĵ , Pj.) and lt(x) I match across a 

C[lc3i-»nn-h-1 nil1 -hv . 
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By combining the matching of (29b) and (29c) one finds that 

t*(x)-t'(x) must match. Thus, we have 

tl(^o) **l(̂ o) = *2(^o) *2(^o) ' (3°^^ 

^(^o) *I(^o) = *2(-o) *2(-o) " ^3°^^ 

The first equation requires 

*l(^o) = ^''° ̂ 2(^0) ' ^^'^^ 

and the second leads to 

tl(x^) = e^'° t^(x^) (31h) 

where e is the phase angle between the two functions at x^. 
o 

For real functions 6 can be 0 or irl 

Although conditions (31a) and (31h) are not Identical to the 

usual matching requirements, they do not give rise to any physically 

different results than those obtained by choosing 6^ = 0. We can 

easily see that this is so with respect to the energy. Thus inside 

Region 2, Figure 1, where V(x) is continuous, the elgenfunction 

to(x) is determined through the Schroedinger equation by the Initial 
-le -le 

values at (x +) of tn (x )e and fUx )e . But these are 
_ie X o X o 

both just e ° times their values with 9 = 0 ; hence the elgenfunction 
-le ° 

throughout Region 2 is e times the value it wotild have with 

the conventional matching conditions (because of the linearity 

of the Schroedinger equation). No c\irvatures, lii)^' > have been 

changed; hence the energy is unchanged. 

Actually our statement of the appropriate matching conditions 

holds also for infinite discontinuities. Consider for example, the 

infinitely deep and completely isolated "square-well" potential. 
See Figure 2, In this case it is obvious that t(x) vanishes 
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Region 2 

Infinite v(x) 

Region 1 

V(x) = 0 

Region 2 

Infinite v(x) 

Figure 2. Square-Well Potential 

identically in all derivatives in the Region 2 outside the well. 

Matching of (29a) — in this special case equivalent to the 

customary condition that f-^i^Q) = ''''2(̂ 0̂  "" ^^°^^ ^^^'^ I'-^M 

vanishes on the boundary. Conditions (29b) and (29c) are now 

automatically satisfied. Independent of the value f^jx^), which 

certainly cannot be zero if t(x) is not to vanish identically. 

The above matching conditions are perfectly general. They 

apply for non-periodic potential problems as well as for periodic ones 

and they are also the proper conditions to use for the "joining" 

of P(x) at the cell boundaries whether V(x) is continuous and 

smooth or not. 

Finally, it is worth pointing out that for discontinuous 

"Jumps" in potential, P(x) must match but P'(x) will not as is 

easily seen from equation (22). In fact Pj(x) matches but 

p'(x) does not. However, even if V is not smooth - but is 

continuous - for example as at a cusp - P'(x) matches. 
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6. .'Nummary of the Proper t ies of ?^U) and P^-fx) - Kven Po t en t i a l s 
p 

1 ditl , . m S (^2a.) 

(32b) 

(32c) 

(32d) 

P' + P-̂  + ̂  (E - V) = 0 

P(x + -K) = P(x) 

p = P„ (across discontinuities in v(x) , 
-'• ^ and at cell walls) 

p' _ P' , (32e) 
ni ~ 21 

^1R ^ ̂ 2R -'^-'^^^ • ^32f) 

Since lt(x)|2 = |t(-x)|2 inside the allowed bands, we have from 

(32a) the important symmetry results: 

P̂ (-x) = Pj(x) , (33a) 

Pĵ (-x) = - Pĵ (x) . (33b) 

Also when Pj(x) ̂  0, t(x) is never zero, and Pĵ (x) is never infinite, 

but must have zeros - of the ordinary variety - for otherwise -s—I. 

could not be zero and hence P_ could not be periodic except for the 

trivial free particle case of P-. = K, P„ = 0. Hence for P-|.(x) ^ 0, 

P (x) is a well-behaved antisymmetric periodic function. 

The eigenfunctions are given by 

/p (a) V ^I '^ 
^(x) = t(a) / p i ^ e a , (33c) 

/ Po dx 
or by, 

t(x) = t(a) e"a ^ ^23d) 

according to whether P..(x) ^ 0 or vanishes identically. 

If PT-(X) vanishes, we also have „r 
2/ P„(x) dx 

lt(x + i)!^ = |t(o)|2 e ° 
x 

2 / P, fx'l rtir 

l*(x)r = lt(o)|2 e ° I 
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Hence 

x+i 

(x) dx 

and 
J Pĵ (x) dx = 0 

period 

(33e) 

Hence, remembering the discussion of the previous section, P(x) = Pĵ (x) 

must have at least one zero in each cell of the continuous variety and 

for which Pg(x) is continuous. Prom (32f) we see that these zeros 

and therefore the zeros of t'(x) cannot occur at discontinuities 

in the potential. 

We will now proceed to the acti;ial solution of a manber of examples 

of periodic potential problems using the above described matching 

conditions and the periodicity on P. In a sense the most difficult 

and least rewarding example is the "classic" Kronig-Penny problem. 

However, it is the standard textbook example and will be treated 

first. 
7. Kronig-Penny Periodic Potential. See Figure 3. 

V(x) 

V 

_ 1 

Region 1 Region 2 

Figure 3. Kronig-Penny Potential 



We proceed with the solutions as follows: 

„ . , Region 2. Region 1. — ^ 

p. . , p 2 . , 2 m ( ^ . ^ ) . 0 ; P' + p 2 + f | E = 0 , (35a) 
n 

P' + p2 . K2 = 0 5 P- -H p2 + K2 = 0 , (35b) 

K 2 = p ( v - E ) ; K 2 = f f . (350 

particular solution = - K ; particular solution = - IK 

general solution: ^ 

2Kx „, e ° 

o 

1̂ = - ^ + hroi ' 2̂ = - ^̂ o + rr-c; 
P̂ _„ 32KX J f 21K X e^^^°^l 

I = ê K̂ dx = ^ ^ ^ ; J = ./ ̂  <^ = —21K 
O O o ° 

1 - 2KC3_ = B ; 1 - 2iK^C2 = A 

2iKpX 

Pl = - K ^ P ^ •> P 2 - ^ ^ o - ^ ^ S ^ ' (36a) 

SIK X 

^ -B e ° -A 

The matching condition at x = 0 gives 

K r ^ = iK^ r ^ T ' A = ̂ -^-^ , q = K + iK^ , (37a) 

and the periodicity of P(x) requires 

2Kb îK̂ a 

^ 72Kb^ ^ ̂ ô ̂ 2iri^ . (37M 
^ -^ e ° -A 
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We now eliminate A from (37a) and (37b) obtaining the following 

quadratic eqiiation on B: 

e^B2(K2+KQ2)gj^j^j^^a-fB[(K2-KQ2)2slnKga coshKb-l^K^K cosK^a sinhKb] 

+ e-^(K2+K/)sin K^a = 0 . (38) 

This equation must be satisfied by all of the allowed values of B. 

If B is real, then Pj(x) = 0, and according to (33b), 

P(x) = Pr)(x) must be odd about the reflection symmetry points. For 

P, (x) to be odd about x = - ̂ , we must have B = ± e"^. These real 

values of B, as easily seen from (37a), give AA = 1, which in turn 

Insures that P2(x) is real. P2(x) must also be odd about x = -g. 

When inserted into equation (37) these values of B give 

[2(K2-K^2) SC + 4KQKCS] = ± 2(K2+KQ2) g ^ (3g) 

where S, C, S, C, are respectively sinK^a, cosK^a, sinhKb and 

coshKb. 

If we assume that B takes on complex values then from equation (38) 

we have: 

BB* = e-2Kb ; B = e-^e^* , M mr 

This is exactly the condition which makes Pj.(x) even about 

X = - |, and X = + |. [it follows from Pj(x) even that Pĵ (x) is 

odd (equation 32a).] For B to be complex it is necessary that the 

discriminant of equation (38) be less than zero. This leads 

immediately to the result: 

[2(K2-K^2) SC + 4KQKCS]2 < k(K^+K^^f S^ . (40) 

Hence the conditions (32c), (32d), (33a) and (33b) give rise to 

allowed energy levels when (39) and (4o) are valid. That is, when 
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[ 2 ( K 2 - K / ) SC + 4K^KC§]2 < 4 ( K 2 + K / ) 2 S^ . (4la) 

The boundaries of the allowed regions correspond to real P(x). 

The eigenfunctions at the tops and bottoms of the bands can be 

—Kb 
taken to be real. Also from B = ± e we find that the 

boundary eigenfunctions are either purely symmetric or purely anti­

symmetric, in fact the value B = - e " ^ gives the solution which 

is symmetric about x = - | and corresponds to 

(K2-K^2) S5 ^ 2KQKC§ = + (K̂ -l-Kp̂ j g . (4lb) 

B = + e"'^ gives the solution antisymmetric about x = - .̂  and 

corresponds to 

(K2-KQ2) S5 + 2K^KCS = - (K^+K^^) g _ (4lc) 

Equation (4la) can be reduced fairly easily to the more familiar 

expression as follows: 

[(K2-KQ2)SC + 2K^KCS]2 - {K^-i^^^)^'^ 4 0 

( K 2 - K „ 2 ) 2 S 2 5 2 4K K ( K 2 - K „ 2 ) S C § 5 + 4K^2K2c2g2 
^ o o ^ o ' o 

- ( K 2 + K / ) 2 S 2 ^ 0 , 

(K2-Kg2)2g2(-L^2j _̂  4KQK(K2.Kg2)gcg5 ^ 4KQ2j^2(g2_-^^^2 

-iK^+K^^fs^ < 0 
(K2-K^2)2g2g2 ^ 4KQK(K2-Kg2)scs5 ^ ^^^^-^^ 

+ ( K 2 - K / ) 2 S 2 - (K2+K^2j2g2 _ in^^2j^2^2 ^ Q ^ 

[(K2-K^2)sg ^ 2 K ^ K C C ] 2 - 4 K / K 2 ^ 0 

,(K^-Ko^)S§ 
l - ^ K l C + C C U l . (42) 
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We note here that although we have assumed the odd symmetry 

condition (33b) on Pf,(x) to discuss the case when B is real in 

order to effect a great deal of simplification, it is not 

necessary to do this. Instead we could use the fact that 

J Pĵ (x) dx = 0 
period 

to obtain another relation on B which together with (38) leads 

to the same results. 

8. The Parabolic-Scallop Potential 

In this example, we assume the periodic potential to be made 

up of a chain of segments of vertical parabolas opening upwards. 

Figure 4 . 

/ \ 
/ \ 

^ / 

/ 

A 
/ ' \ 

/ 1 \ 
/ ' \ 

V / i V 

'v(x) 

y 

\ A 
\ / \ 

2 0 

0 

2 

V(x) = | K X 2 ; 2 ^ x < 2 

V(y) = y2 ; - y^ ^ y ^ y^ 

V(x -H i ) = V(x) ; V(y + 2y^ = V(y) 

Figure 4. Parabolic-Scallop Potential 
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The equation to be solved under the conditions of Section 6 

is as follows: 

P' + p2 + 2m (g . 1 Kx2) = 0 . (̂ 3) 

Let 

Then, 

P = aZ ; X = Py (44) 

a d Z ^ „ 2 2 2 ^ ^ . m | p 2 y 2 ^ 0 , (45) 

Z' + Paz2 + ̂  I - !f |i y2 = 0 . (46) 

pa = l ; ^ # = l , ff | = T . (̂ 7̂) 

Then o /—?" 

*̂  mK a V ™K 

Z' + Z'̂  + Y - y'' = 0 , (49) 

P = A S Z ; X A/S'y 5 E = TK/F • (50) 

and 

' ^ ^ ' ^ = Miic * ' ^ = i'2 ^/5 

The function Z(y) must satisfy the same matching, periodicity 

and symmetry conditions as P(x). In fact 

y'p(x) dx = J Z{j) dy , (51) 

If Z(y) has an imaginary part, we may write 

t(y) = t(o) ̂ - - e o , (52) 
Zi(y) 

whereas for Z real we write 

^R"^ 
t(y) = t(o) e ^ . (53) 
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Equatlon (49) Is a Ricatti equation. If we can find a particular 

solution, then we can get a general solution. A particular 

solution can easily be shown to be 

Zp = - y + ̂  . (53) 

where * = <t>(a,c; y2) = it>(i^ , ̂  ; y ) is the confluent hyper-
4 

geometric function as defined in Bateman. This particular 

solution could be used to linearize the Ricatti equation and thus 

obtain the general solution by simple quadrature. However, it is 

simpler in the present case Just to use for <t> a general solution 

of the confluent hypergeometrie differential equation. Such a 

solution suitable for our purposes (See Bateman, p. 253) is: 

O- = *i(a, c; y2) -f By2(^-°)*2(a-c+l' 2-c; y2) , (54a) 

2y(<t>̂  + By<t>2)' 
0 = •-L + By*2, Z = - y + (0^ + ByOg) (54b) 

where we have labeled the two confluent hypergeometric functions 

with subscripts in order to simplify the notation. As before, 

a = i ^ and c = -i. These functions are real functions. The 

general solution for Z can now be written down 

2y<t)' + B<t>„ + 2y2B<l>' ^ ^ 
^ - - y -̂  \ ^ By,^ ' (55) 

where B is an arbitrary constant to be determined by the symmetry 

Bateman Manuscript Project, Higher Transcendental Functions 

V.l, Ch. VI, pp. 248-293, Erdelyl, Magnus, Oberhettinger and 

Trlcoml, McGraw-Hill (1953) • 
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conditions on Z, and the indicated derivatives are taken with 

respect to the variable y . 

The periodicity relation (32c) now becomes 

Z{-Y^) = Z(+y^) 

where Py = L With a little algebra we find that 
'o - 2 

B^{Y^,y) 
$^ ( 2 * j - * ^ 

2„.< 
* [0 (1-y^) + 2y''*2̂  

(56) 

(57) 

from which we conclude that B is real or pure Imaginary. 

For B real, Z is real and we have from the symmetry condition 

(33b) 
Z„(-y) = - Z„(-y) (58) 

which restricts B.to the value zero. Since (54b) is so easy to 

integrate, it is actually simpler to use for real Z(y) the 

condition (33c) 

Z dy = 0 

period 

instead of (58). Thus 

/ Z dy = - |- + £n(*ĵ  + By*2) 

*l(yo) + By^02(yo) „ 
*l(-y,) - By^^^(-y^) = 

\{y^) + By^02(yo) , , 

\{yj - By^*2^yo) ^ 

from which it follows that either 
*l(yo) = 0, 1'2(yo) = 0> B = 0, or B = ± 
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We see from (57) that <'']̂ (yo) = 0 requires B = 0 and *2(yo) ̂  ° 

gives B = ± •» (or ± ito if B is not real). Since none of the 

properties are changed at infinite B whether B = ± «> or + 1", 

we will Ignore the possibility of B = ± °° and include this 

infinite situation in the imaginary set. Hence the only real value 

of B which is allowed is B = 0. 

When B is pure imaginary we must have from (57) that 

*1 (2*1 - '̂ i) 

*2 [fgd-y^) + 2y2<t>̂ ] 
< 0 (59) 

The condition (59) also Insures that Z-|-(y) be even. The relation (59) 

supplemented by the condition B = 0 gives 

\ (21'i - *i) 

<|.2 <t'2[*2(^"y^) •*• 2y^*9l 
^ 0 (60) 

-iVr 

as the complete condition for the evaluation of the allowed bands 

as a function of the "lattice" parameter 2y^. 

The eigenfunctions are easily calculated from the general 

expression y 

j Z dy 

t(y) = t(o) e o . (6l) 

The value B = 0 gives the edges of those bands whose levels 

coalesce for infinite period y^ to the discrete levels of the 

isolated simple harmonic oscillator having eigenfunctions of even 

symmetry. In these cases 
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p 

t(y) = t(o) e-y /2 *^(i^ , I ; y2) , (62) 

where y = 4n + 1 gives the discrete levels into which these bands 

coalesce. On the other hand B = ± 1°° gives the edges of the bands 

which arise from the antisymmetric simple harmonic oscillator 

levels; hence from equation (55)j setting B = ± 1", 

0_ + 2y2<l>' 
Z = - y + - ^ ^ , (63a) 

-, d.en«„ 
Z = - y + ̂  + 2y ^ , (63b) 

^ 6.y 

t(y) = A e-y /2 y * 2 ( ^ , | J y2) , (63c) 

where 7 = 4n + 3 gives the limiting level of these bands. 

A portion of the band structure obtained by considering 

the zeros of the numerator and denominator of the terms in 

expression (60) is given in Figure 5. Unfortunately tables of 

the confluent hypergeometric functions^ are not sufficiently extensive 

and detailed to get a precise picture without further computation. 

The main features are, however, well illustrated. Note 

particularly that some forbidden regions exist for energies above 

the cusps of intersection of the parabolic segments. One notes 

also that as y^ ̂  0, edges of bands having opposite symmetry 

properties approach each other but touch and coalesce only in the 

limit of y^ = 0. Thus the exceptional case discussed earlier 

arises only in the limit. 

5we have used "Confluent Hypergeometric Functions," L. S. 

Slater, Cambridge University Press, i960 and "Tables of Functions," 

E. Jahnke and F. Emde, Dover Publications, 1943. 
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Fig. 5. Band Structure of 

Porabo l i c -Sco l lop Potential. 

V(x) = '/2 kx2 

V(y)= y2 

[<^2( l -y^) + 2y'^</'2]y^=C] 

I 2 3 

HALF-LATT ICE PARAMETER, VQ 
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9. General Case One-Dimensional Infinitely Periodic and Even Potential 

In this section the band structure problem for the general 

one-dimensional infinitely periodic even potential is considered. 

The general case is Illustrated at various stages by reference to 

the potential shown in Figure 6, a chain of parabolic segments 

opening downwards. 

AV 

V(x) =--2-kx;--2<:x<;^ , 

V(y) = -y2; -y^ < y -̂  y^ 

V(x + Z) = V(x); V(y + 2y^) = v(y) . 

Figure 6. Inverted Parabolic-Scallop Potential 

Using the same substitutions as in Section 8, one obtains the equation 

0 , (64) 
p p 

z' + z + y + y 

Solutions for the present problem as well as for the general case 

with y replaced by any even potential function V(y), cannot be 

expressed in terms of confluent hypergeometric functions using real 

parameters and real variables. Bessel functions or other tabulated 

functions will also not suffice. Another approach must be taken. 
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Clearly a particular solution of (64) can be obtained (in series 

form or otherwise) which is purely odd for then all terms in (64) 

will be even. Let such a solution be f(y^y) • With this f(y) -- for 

simplicity we drop from time to time the explicit Indication of the 

dependency on the energyY--the complete solution of (64) becomes 

-2/ f du 

z(y) = f(y) +^ ° ^ , (65) 

y -2J t{v)dv 
e ° du -f B 

o 

where B is the constant of Integration to be determined by the 

conditions on z(y). Now 

f du is even , (66a) 

o 

u 
V -2J t{v)dv 

I e o du is odd , (66b) 

o 

since f(y) is odd. Prom the periodicity relation we have the 

equation 
z(yo) = 2(-yo) > (67) 

which leads to 

-2/ f(u)du 

I„[l.f^ + e o ] 
B' 
2 ô -̂ o o • 1 ^ (68a) 

f o 
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where 
u 

^O -21 f{Y)dY 

lAjJ -I = Te o du , (68b) 

o 

f„ = f(Y, y^) • (̂ °̂) 

We see from (68a) that B must be real or pure imaginary. If it is 

real then the odd symmetry of z(y) or alternatively equation (33e) 

shows that B = 0. Hence we are left with the condition that 

•̂o 

-2j f(u)du 

Ijl f. + e ° ] 2 0 0 o 
B = < 0 . (69) 

^o 

When (69) is satisfied we will have the allowed band structure of 

the inverted parabolic potential. From (68b) we see that I^ is 

always positive (y > 0). Hence the allowed regions are given by 

^o 

-2J f(u)du 

Î f̂  + e ° 
^ ^ 0 . (70) 

f o 

Since f(Y,y) is a particular solution of (64) with f(Y,o) = 0, 

it starts out with a slope -y. Hence for negative energy states, 

f ^ 0 from y = 0 up to the first sign change f (y, y ). A 

forbidden zone exists immediately below y = 0 whose width is 

determined by the lattice parameter y . 

Unfortimately the particular solution f(y, y ) will not be 

well-behaved in general; it will have infinite discontinuities. 

We can see this by realizing that the most general "particular 

solution" we can have for the real function f is 
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f = •^s -̂  ̂ 1 ^ 1 

*S + %*A 

(71) 

where B-, is real and $ and *^ are respectively the symmetric and 

antisymmetric elgensolutlons of the Schroedinger equation: 

*" + (T + y )* = 0 (72) 

In general there would not be a choice of B, which would insure that 

the denominator of (71) have no zeros. For example, suppose we 

choose 

f = (73) 

where *„(y,o) = 1. Then (65) becomes 

z(y) = / + 
s 

o*S 
-2 ^ dy 

^ 
e o 

dv 

du -f B 

(74) 

z(y) = ̂  + 

s 
du -f B 

(75) 

z(y,) 
1 / ^ 1 1 \ (76) 

If for a certain y, y = y-, corresponds to the first zero of *g(y,y). 

then the Integral I 
. / o du 

o :; * 2 
O $g 

in the above equations becomes infinite 
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at y = y . Hence the analysis described in equations (65-69) 

would not be applicable for y^ > y-̂  I This poses a dilemma. 

Although the integral l{y^) becomes infinite at y^ = y^, 

one can easily show that ^gl does not become infinite. Hence, 

if <t> I can be replaced by some new calculable function which Is 

identical with 0>gl for y^ < y^ and which carries over into the 

region beyond y = y-, without becoming infinite, then our dilemma 

will be removed. Let us examine the properties of Ogl. 

t = *„I = *J ^ , (77a) 
' ^o *s2 

t' = *;i + *^ > (77b) 

t" = *gi H- 4 - 4=*s / ' (77=̂  

t" = - (T + y^)* • (77d) 

Hence t(y) obeys the same Schroedinger equation as does *„. 

Furthermore t(o) = 0 and t'(o) = 1; hence t is Just the anti-

symmetrical solution *.; 

*A = V • (78) 

Equation (75) can now be written 

z(y) = ^ [̂ s + 0^+B0g^ • (79) 

Equation (79) is a perfectly general solution of equation (64), or 

for that matter of any periodic one-dimensional even potential 

problem where <t>g and "Ô  are the correspondingly appropriate symmetrical 

and antlsymmetrical solutions. With these solutions, equation (69) 

reduces to 
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.2 *A*A 
B̂  -f^^O ' (8°) 

S sj 
ô 

as the general expression for the determination of the band 

structure. The band edges correspond to B = 0 or ± 1" and lead 

as before to Bloch k values of 0 and Tr/2yQ- The eigenfunctions 

at the band edges are: 

^̂ (y) = *A' (̂  = °) 

[k = 0 for '\>^{yj = 0 ; k = 2 ^ for -(-̂ (ŷ ) = O] 

S S 
^o 

(8la) 

tg(y) = *s; (B = ± 1") 

[k = 0 for *^(y^) = 0 ; k = g ^ for *3(y^) = O] ^ . (8lb) 

Inside the bands we have B = iC, C / 0 or «=, 

<t> *' 
„2 ^k k 

z(y) = ^ [*s + 0^ + ic^g^ 

t(y) = o-A + iC0g 

The last equation is the result of integration of (82b) using 

the fact that the Wronskian is a constant and equal to one; 

4 0' - 0*0 = 1 . Also we have from (82b) the relation 
S A S A 

z,(y) = 2 " V 2 ' ("3) 

from which it follows that the Bloch k value is given by 
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^o 
C_ r _ d 2 L ^ , (84a) 
y o > 4 * / + c20g2 

1 f!s _ I , (84b) 
^n = *an - ^ - 2 

' o 

sin2 ky, = - 0^(yj *^(y,) . (8^d) 

Actually equations (80-84) could have been derived very simply 

from the periodicity relation on It(2 and the matching condition 

on the logarithmic derivative at the cell wall. (See Appendix III). 

Thus we have gone in a full circle. However, by this route we have 

learned how to calculate the eigenfunctions within the allowed bands 

and the relations between our treatment and the Bloch method. 

The completion of the band structure calculation for our 

specific example - the Inverted parabolic-scallop potential - is a 

simple machine computational exercise. The infinite series 

solutions of (72) for 't'g(y,y) and <l>̂ (y,y) are used to calculate 

the two functions and their first derivatives for various values 

of y and y. For a given value of the half lattice parameter, y = y^, 

one seeks those values of y which make the functions or their first 

derivatives zero. Alternatively, for a given y, one seeks the 

values of the half-lattice parameter, y = y , which makes the 

functions and derivatives vanish. 
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TABLE I. LOCI OP POINTS OF y VS y^^-INVERTED PARABOLIC SCALLOP POTENTIAL 

Y 

2.0 

1.9 

1.8 

1.7 

1.6 

1.5 

1.4 

1.3 

^0 

%iyj = 0 

1.0709 
2.4477 
3.4107 
4.1849 
4.8482 

1.0948 
2.4731 
3.4341 
4.2066 
4.8686 

1.1202 
2.4992 
3.4581 
4.2288 
4.8894 

1.1472 
2.5263 
3.4827 
4.2515 
4.9106 

1,1761 
2.5542 
3.5079 
4.2748 
4.9323 

1.2068 
2.5832 
3.5340 
4.2986 
4.9546 

1.2398 
2.6133 
3.5608 
4.3232 
4.9774 

1.2750 
2.6446 
3.5886 
4.3485 
5.0009 

*•(y^) = 0 

1.8072 
2.9482 
3.8081 
4.5231 

1.8327 
2.9726 
3.8306 
4.5442 

1.8592 
2.9976 
3.8536 
4.5656 

1.8870 
3.0234 
3.8773 
4.5876 

1.9160 
3.0500 
3.9C15 
4.6100 

1.9464 
3.0774 
3.9264 
4.6331 

1.9783 
3.1058 
3.9520 
4.6567 

2.0119 
3.1352 
3.9785 
4.6811 

\(y,) = 0 

1.8204 
2.9477 
3.8044 
4.5185 

1.8432 
2.9699 
3.8251 
4.5380 

1.8664 
2.9924 
3.8460 
4.5576 

1.8902 
3.0151 
3.8672 
4.5775 

1.9145 
3.0382 
3.8886 
4.5975 

1.9393 
3.0615 
3.9102 
4.6177 

1.9646 
3.0851 
3.9320 
4.6381 

1.9903 
3.1090 
3.9540 
4.6586 

*;(y,) = 0 

0.9882 
2.4131 
3.3898 
4.1696 
4.8359 

1.0047 
2.4358 
3.4112 
4.1897 
4.8549 

1.0218 
2.4589 
3.4329 
4.2099 
4.8741 

1.0395 
2.4823 
3.4549 
4.2305 
4.8933 

1.0579 
2.5061 
3.4771 
4.2511 
4.9128 

1.0771 
2.5303 
3.4995 
4.2720 
4.9324 

1.0969 
2.5549 
3.5222 
4.2931 
4.9521 

1.1175 
2.5798 
3.5451 
4.3143 
4.9721 
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TABLE I (Continued) 

1.2 

1.1 

1.0 

0.9 

*s(yo) 

0. 

0 

0 

0 

8 

7 

.6 

.5 

1.3129 
2.6772 
3.6173 
4.3746 
5.0252 

1.3535 
2.7113 
3.6471 
4.4016 
5.0502 

1.3970 
2.7470 
3.6781 
4.4296 
5.0761 

1.4438 
2.7844 
3.7105 
4.4588 

1.4939 
2.8236 
3.7442 
4.4891 

1.5476 
2.8648 
3.7794 
4.5206 

,6047 
.9079 
.8162 
.5535 

,6652 
.9531 
.8545 
.5877 

^3(^0) 

2.0472 
3.1658 
4.0058 
4.7062 

2.0845 
3.1976 
4.0342 
4.7322 

2.1239 
3.2307 
4.0636 
4.7591 

2.1656 
3.2654 
4.0943 
4.7870 

2.2096 
3.3016 
4.1262 
4.8161 

2.2562 
3.3396 
4.1594 
4,8463 

2. 
3. 
4. 
4. 

2. 
3. 
4. 
4, 

3053 
3793 
1942 
8778 

3570 
4207 
2303 
,9105 

*A(yo) 

2.0165 
3.1331 
3.9762 
4.6793 

2.0432 
3.1575 
3.9985 
4.7001 

2.0703 
3.1821 
4.0211 
4.7211 

2.0978 
3.2070 
4.0438 
4.7422 

2.1256 
3.2320 
4.0666 
4.7634 

2.1539 
3.2572 
4.0896 
4.7847 

2.1825 
3.2825 
4.1126 
4.8061 

2.2112 
3.3081 
4.1358 
4.8277 

*I(yo) 

1.1387 
2.6050 
3.5682 
4.3357 
4.9921 

1.1610 
2.6306 
3.5915 
4.3573 
5.0123 

1.1839 
2.6565 
3.6150 
4.3790 
5.0327 

1.2076 
2.6826 
3.6388 
4.4008 
5.0531 

1.2321 
2.7090 
3.6626 
4.4228 
5.0737 

1.2574 
2.7357 
3.6867 
4.4450 
5.0944 

1.2835 
2.7627 
3.7108 
4.4672 

1.3104 
2.7897 
3.7351 
4.4895 
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TABLE I (Continued) 

*s(yo) = 0 

0.4 

0.3 

0.2 

0.1 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

1.7290 
3.0001 
3.8943 
4.6232 

1.7954 
3.0488 
3.9355 
4.6599 

1.8638 
3.0989 
3.9777 
4.6975 

1.9334 
3.1498 
4.0207 
4.7357 

2.0031 
3.2010 
4.0640 
4.7741 

2.0721 
3.2518 
4.1070 
4.8125 

2.1393 
3.3016 
4.1494 
4.8503 

2.2039 
3.3501 
4.1906 
4.8872 

2.2656 
3.3967 
4.2305 
4.9229 

's(^o) = 

2.4110 
3.4638 
4.2678 
4.9444 

2.4671 
3.5084 
4.3066 
4.9794 

2.5248 
3.5542 
4.3464 
5.0153 

2.5835 
3.6008 
4.3868 
5.0518 

2.6423 
3.6476 
4.4275 
5.0898 

0.5471 
2.7007 
3.6942 
4.4681 

0.7711 
2.7578 
3.7400 
4.5080 

0.9394 
2.8131 
3-7845 
4.5470 

0770 
,8660 
.8274 

4.5846 

^(^0) 

2.2403 
3.3337 
4.1591 
4.8492 

2.2696 
3.3594 
4.1824 
4.8708 

2.2990 
3.3852 
4.2058 
4.8925 

2.3286 
3.4110 
4.2292 
4.9142 

2.3599 
3.4364 
4.2535 
4.9333 

2.3880 
3.4620 
4.2761 
4.9575 

2.4178 
3.4886 
4.2994 
4.9791 

2.4476 
3.5143 
4.3227 
5.0007 

2.4773 
3.5400 
4.3459 
5.0222 

*A(yo) 

1.3380 
2.8170 
3.7595 
4.5119 

1.3663 
2.8444 
3.7840 
4.5343 

1.3952 
2.8719 
3.8085 
4.5568 

1.4248 
2.8995 
3.8330 
4.5793 

1.4538 
2.9245 
3.8553 
4.6007 

1.4857 
2.9549 
3.8820 
4.6242 

1.5168 
2.9824 
3.9066 
4.6467 

1.5483 
3.0100 
3.9311 
4.6691 

1.5802 
3.0375 
3.9555 
4.6914 
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TABLE I (Continued) 

*s(yo) = 0 

-0.5 

-0.6 

-0.7 

-0.8 

-0.9 

-1.0 

-1.1 

-1.2 

-1.3 

2.3240 
3.4412 
4.2687 
4.9573 

2.3791 
3.4836 
4.3053 
4.9902 

2.4308 
3.5239 
4.3402 
5.0217 

2.4795 
3.5622 
4.3735 
5.0519 

2.5253 
3.5986 
4.4053 
5.0807 

2.5685 
3.6332 
4.4356 

2.6094 
3.6662 
4.4648 

2.6482 
3.6979 
4.4927 

2.6852 
3.7282 
4.5197 

^s(^o) 

1.1939 
2.9164 
3.8686 
4.6208 

1.2954 
2.9642 
3.9078 
4.6555 

1.3847 
3.0094 
3.9452 
4.6886 

1.4643 
3.0521 
3.9808 
4.7202 

1.5359 
3.0925 
4.0147 
4.7504 

1.6010 
3.1308 
4.0470 
4.7794 

1.6605 
3.1673 
4.0779 
4.8071 

1.7154 
3.2020 
4.1076 
4.8339 

1.7665 
3.2353 
4.1361 
4.8596 

\{y,) - 0 

2.5069 
3.5656 
4.3690 
5.0436 

2.5363 
3.5910 
4.3920 
5.0650 

2.5657 
3.6163 
4.4149 
5.0862 

2.5948 
3.6415 
4.4377 

2.6238 
3.6664 
4.4603 

2.6525 
3.6912 
4.4828 

2.6809 
3.7158 
4.5050 

2.7091 
3.7402 
4.5271 

2.7371 
3.7643 
4.5490 

^l(yo) 

1.6122 
3.0649 
3.9797 
4.7137 

1.6445 
3.0922 
4.0039 
4.7359 

1.6769 
3.1193 
4.0279 
4.7578 

1.7093 
3.1463 
4.0518 
4.7797 

1.7417 
3.1731 
4.0755 
4.8015 

1.7740 
3.1996 
4.0991 
4.8231 

1.8063 
3.2260 
4.1224 
4.8445 

1.8383 
3.2521 
4.1456 
4.8658 

1.8702 
3.2779 
4.1685 
4.""' 
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TABLE I (Continued) 

-1.4 

-1.5 

-1.6 

-1.7 

-1.9 

^s(yo) 

2.7206 
3.7575 
4.5457 

2.7545 
3.7857 
4.5709 

2.7871 
3.8130 
4.5954 

2.8186 
3.8395 
4.6192 

2.8490 
3.8653 
4.6424 

2.8786 
3.8904 
4.6650 

^•(y^) 

1.8142 
3.2672 
4.1636 
4.8845 

1.8591 
3.2979 
4.1902 
4.9087 

1.9015 
3.3275 
4.2160 
4.9321 

1.9418 
3.3562 
4.2411 
4.9550 

1.9803 
3.3841 
4.2655 
4.9773 

2.0172 
3.4112 
4.2893 
4.9990 

\(y,) = 0 

2.7647 
3.7882 
4.5708 

2.7920 
3.8119 
4.5923 

2.8190 
3.8353 
4.6136 

2.8458 
3.8585 
4.6347 

2.8721 
3.8815 
4.6556 

2.8983 
3.9042 
4.6763 

*l(yo) 

1.9018 
3.3035 
4.1913 
4.9078 

1.9331 
3.3288 
4.2138 
4.9285 

1.9641 
3.3539 
4.2361 
4.9491 

1.9948 
3.3787 
4.2582 
4.9694 

2.0252 
3.4301 
4.2801 
4.9896 

2.0552 
3.4274 
4.3018 
5.0096 

The functions 03(7,y), ^f^iy.v), *s(T,y) and *^(y,y) are available 

at Argonne National Laboratory for the ranges -2.0 <̂  Y < + 2.0, 

_5 ̂  y ̂  + 5 for Intervals Ay = 0.1 and Ay = 0.1. These tables of 

functions make it possible to calculate C(y,yQ) from equation (82a), 

the eigenfunctions t(T,yo; y) f̂ -om equation (82c), and the Bloch k 

value from equation (84d) for any situation within the allowed 

energy regions. 
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Table I gives the values of the energy y and the corresponding 

values of y for which the two functions and their first derivatives 

vanish. The curves of y vs y^ for each of these functions is 

plotted in Figure 7. The allowed regions for which C > 0 is 

cross-hatched. The curve marked y = y^2 gi^gs the bottom of the 

potential well which occurs in our choice of coordinates at 

V _ ± V + 3v + 5y .... It-is clear from the figure that until 
y - ^ JQ> - -'j'o' ~ ''o 

a certain depth is reached there can be only one band below E = 0. 

Also, for a given y^ not too large there is an allowed band that 

spans both positive and negative energies about y = 0 (E = O). 

Contrary to the case of the potential consisting of parabolic 

segments opening upwards, each discrete level at Infinite separation 

belongs to eigenfunctions of both symmetry class. For example, the 

lowest band has boundaries which correspond to *3(yo) = 0 and 

0'(y ) = 0 and appears to arise from a symmetrical function about 

y = 0 which goes to zero in the middle of the infinitely deep well 

and an antlsymmetrical function which also goes to zero in the middle 

of the infinitely deep well. Both are pushed up by the Juxtaposition 

of other potentials but they retain their zero slopes at ± y^. If one 

considers the symmetries of the functions about the center of the well 

as was the case for the parabolas opening upwards — then the top and 

bottom of each allowed band has eigenfunctions of the same symi-iietry. 

Finally one notices that the tops of the bands and hence the discrete 

levels at infinite y assume a.linear relation in y^ as y becomes 

more and more negative. Thus, the energies of the bands measured 

from the bottom of the well get larger quadratlcally as y increases. 



Fig. 7. Bond S t ruc tu re - I nve r t ed 
Parabol ic Scal lop Potential. 
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10. Roof-Top Potential 

The infinitely periodic "roof-top" potential can be treated 

with only modest difficulty. The potential is illustrated 

i n F igu re 8 . 

V(x) 

» X 

•L 
2 2 

-^o +^0 

2V_ 
V(x) = - j - x ; 0 < x < 2 

-2V 
V(x) / x ; ^ ^ x ^ O , 

V(x) = 6 —f- xj 6 = ±1. 

Figure 8. Roof-Top Potential 

The appropriate Schroedinger and Ricatti equations are: 

0" -t- (y-6y) *= 0, (85a) 

z'-i-z + y - 6 y = 0 . 

y = 
2mE „2. „3 -gt''' 
72- P ' P = TfiBv" ; X = Py 

(85b) 

(85c) 

Let f(y,y,6) be the solution of (85b) under the assumption that 

f(y,o,6) = 0. Then as before 

-2/ f du 

z = f H- e "̂o 

u 
-2/ f dv 

(86) 

du -t- B 
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Now f(y,y,-H) is to be used for y > 0 and f(y,y,-l) for y < 0. 

A little consideration shows that f(y,y,-H) = -f(y,-y,-l). 

Hence f(y) is an odd function about y = 0. As in Section 9, 

we have a general solution 

-2J f(y,u,-fl)du 

2(y) = f(Y,y,-n) + - ^ — (87) 

u 

-2j^f(y,v,-H)dv 

; o du -f B 

for y > 0 and 

-2j f(y,u,-l)du 

z(y) = f(T,y,-i) + — ^ ^ (88) 

u 

-2rf(y,v,-l)dv 

o 

for y-^ 0. The two B's are the same due to the matching at y = 0. 

The periodicity condition on z(yQ) leads to the condition on B: 
^o 

-2j f(y,u,-l-l)du 

32 _ ^JV(Z:ZO:!^L!L:!_^ I , (89) 
f(Y,yo,-n) 

where 

u 

?°-< f(y,v,-)-l)dv 
l o ^ ^0(^-^0) = j ^ •'̂  • ^5°^ 

o 
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Since I is always positive we are lead exactly as in Section 9 

to the inequality which must be met to have allowed levels: 

-2j f(y,u,-H)du 

I,f(Y,yo,-.l) ̂  e o ^^^ _ ^^^^ 

f(Y,yo,-n) 

In principle it is a very simple machine computational problem 

to calculate f(Y,yQ,+l) from the equations 

f ' + f 2 + Y _ y = 0 , (92a) 

f(y,o,-H) = 0 , (92b) 

and, in turn to calculate the other terms in (91) for y^ values up to 

the first sign change of f (Y,yQ,-i-l). Clearly f starts out at zero 

with a negative slope (for y > O); hence there is an allowed band for -

each y starting from y^ = 0. 

In order to continue the calculations beyond the first sign change 

of f(y,y ,-H) it is necessary to proceed as illustrated in Section 9. 

We take f(y,y ,-H) to be the logarithmic derivative of the symmetrical 

solution of the Schroedinger equation (85a): 

*o(Y,y,-H) , , 
f(Y,y,-H)e = ^ - . (93) 

i's(Y,y,+i) 

Now 0_(y,y,±l) can be expressed in terms of Bessel functions. 

The results are: 

3 1 
*s(Y,y,+i) =-/Y^ [A^ J^II (y-y)2| -I- Bj J_-J\^{y-yf'\'\ , (94a) 
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*3(Y,-y,-i) =^/rJ^ ^ V i {f(^+y) J "̂  2̂ J-i{f(^+y) p • (̂ '̂ '̂ ^ 
3 3 

It is easy to see that if we choose A2 = A^, Bg = B-ĵ , then 

i'g(Y,-y.-i-i) = <i's(Y,y,-i) • (95) 

Hence (94a, 94b) do indeed represent a symmetrical solution. The 

solution will be smooth across y = 0, that is the logarithmic 

derivative will match, if we choose A and B so that 0'(Y,O,±1) = 0. 

Similarly we can obtain an antlsymmetrical solution if we set 

3 f h 
*Ay,7,+i) = ̂ Y ^ fĉ  Jj j|(Y-y)^} + % J.i{|(Y-y)^|] . (96a) 

3 3 

(96b) 
, 3 J- ^ 

*A(Y,y,-i) =*/YH? [C-̂  J-J^iy+jfj + D]_ J_ij|(Y+y)^|] 

3 3 

where C-, and D, are chosen in such a way to make 0^(7,o,±l) = 0. 

Thus we have the two conditions: 

3 3 3 I 
_ ^ [„ J (̂ ') + B, J ,(^)] - Y[AI J I ( ^ ) + B, J:,(21-)] = 0, (97a) 

2 / 7 3 3 3 3 

3 3 

C, Jji^) ^ D, J.,(S^) = 0 . (97b) 

3 3 

Equation (97a) may be reduced to the following relation after using 

appropriate recursion formulae connecting derivatives and functions: 

^"Bessel Functions for Engineers", N. W. McLachlan, Oxford 

University Press, 194l, p.24. 
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3 

J O ( ^ ) 

r(y) = i - i ^ ; A, = rB, • (98a) 
3 

J_2(^) 

Similarly (97b) reduces to the relation 
3 
.5 

^-l(^) 
s(y) = - -^ 3 ; C^ = BD^ . (98b) 

P̂ 2 
J ^ l ( ^ ) 

3 

The edges of the allowed bands will be given by the zeros of 

*3(yo), *s(yo)' *A(yo)' """"^ *A(yo) ̂ ^̂ ^̂  ^^ '̂'̂ '̂'* (̂^̂^ "̂"̂  (̂ ^̂^ 
into (94a) and (96a). For the energy region below the ridge of the 

roof, y < y , the argument in the Bessel functions is Imaginary and 

it is convenient to replace the ordinary Bessel functions 

J+-,jl(Y-y)2[ by the modified Bessel functions I+i|_3(y-Y)-̂ j" in 

"3 ^ 
equations (94a) and (94b). With these substitutions we obtain the 

following equations. For 

y^ > y, X = |(yo-Y) , (99a) 

0g(x) = Bx3{-rl^(x) + I_TL(X)} , (99b) 

d*.,(x)̂  2 

dy 

\M 

= Bx3|-rl_2(x) + l2(x)j- , (99c) 

3 3 

Dx3[-sl^(x) + I_-L(X)| , (99d) 
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For 

d«^(x) 

dy 
= Dx ̂|-sl_2(x) -t- l2(x)| 

YQ < Y, z f(^-y|)* 

*s(z) 

d0_(z) 

Bz 

dy J 

L 

^{rj^(z) + J_i(z)| 

3 3 

- Bz3|rJ_2(z) + J2(z)} 

<t>̂ (z) = Dz3|sJ-^(z) + J_i(z)| 

(99e) 

(lOOa) 

(lOOb) 

(lOOc) 

(lOOd) 

d<t>̂ (z) 

dy 
Dz3isJ_2(z) + J2(z)j 

3 3 

(lOOe) 

It is easy to see that the above equations do indeed have the 

appropriate properties. For example (lOOc) and lOOd) are zero for 

y = 0. Also equations (99) match equations (lOO) at y^ = y. It 

is clear from equations (99) and the fact that I„(x) and I_v(x) 

approach each other at large x that the symmetric bands start from 

discrete levels given by r(y) = 1 and the antisymmetric bands start 

from discrete levels given by s(y) = 1. The entire band structure 

can be mapped out using the NBS Tables.'^ The results are illustrated 

in Figure 9. 

^"Tables of Bessel Functions of Fractional Order", Vol. 1 and 2, 

National Bureau of Standards, Columbia University Press, 1948. 
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Fig. 9. Bond Structure 
Roof Top Potential. 

>• 

<s> 
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HALF-LATTICE PARAMETER, y^ 
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11. Three-Dimensional Periodic Potential Problems. 

Let us consider problems for which 

dm 
- x/ij + [v(r)-E|t = 0, (Ida) 

V(F-+-I) = V(F), (lOlb) 

3 = 2 ^ ^ (t*V7t - frnf*), (101c) 

S(F-t-I) = S(F). (lOld) 

In an analogous fashion to the procedure followed in Section 4, let 

P = E ± , (102) 
t 

where T is now a vector. Equation (lOla) becomes 

y.p + p2 + 2m [g _ ^(-)j ^ 0, (103a) 

I ^ 21 m 7 ^ 
(103b) 

p ^ 1 V|t| (103c) 
^ 2 1̂ ,2 ' 

P l i i ^ + i^.J_ . (103d) 
2 |*|2 "̂  Itl^ 

Since S" and |tl^ are periodic with the periods of the lattice, 

the vector T is also periodic. 

Let us confine our attention to potentials V(F) = V(x,y,z) 

which are separable : 

V(x,y,z) = Vi(x) + V2(y) + V3(z). (104) 
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Equation (103a) becomes 

^ ^ p 2 ^ 2 m 2 m ^ ^ ) ^, 
S 3 r X j^2 X j^2 1 

Sy y h ^ h I 

SP., ̂  p 2 2m _2m „ / -) _ Q 

E + E -f E = E. (105b) 
X y z 

For these separable potentials a particular solution F can be found 

such that 

V-F -f F^ + ̂  (E-V) = 0, (106a) 
h 

F = iF^(x) + jF^Jy) + kP (z), (106b) 

for under this latter circumstance equation (105a) is separable. 

As before we now attempt to use the particular solution F to 

linearize (103a): 

P = F -h U, (107a) 

X/'T = V F + V-U, (I07h) 

i^ =^ + 2p.u + if, (1070) 

\7.U + 2F.Tr -t- U2 = 0 . (I07d) 

Further, we can write 

F F 

2I F.d¥ 2/ F.d's 

\7-(e ° U) = e (VU + 2F.U), (108a) 
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V(e^*U) = -u2 e^*, (108b) 

0 = rB^.ds" = / F dx -t- / F dy -h r F dz. (108c) 
J o J o ^ o ^ ^ o ^ 

Hence (108b) becomes 

^•(6^%) = -(Ue2*.ue2*)e-2*, (109a) 

V T = -T2e"2*, (109b) 

T = e2*u. (109c) 

A general solution to (109b) can be found by analogy with the one-

dimensional case. Since our particular solution F, has the form 

(106b) we can write 

*x =j\^^-' *y =XV^' *z =Jjz^-' (̂ °̂̂ ) 

The general solution to (109b) is: 

T = f^(y,z) + I^ + f2(^>^) + Ig ^ f3(x,y) + 13' ^'"'"^ 

Where f , f^, and f are perfectly arbitrary functions, real or 

complex, of the indicated variables and 

X -20 -20y -20^ X -20^ 

I, = r e dx = e e / e dx, (112b) 
i J o >̂ o 

y -20 -20^ -20^ y -20y 

I_ = /'e dy = e e f e dy, (112c) 
"^ ^ o ^ o 

z -20 -20^ -20y z -20^ 

I = / e dz = e e / e dz. (112d) 
3 J o Jo 
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The general solution to (I06a) now becomes 

P = F + e-2*[^_^^ + ̂ - 4 ^ + I - 4 T - ] - (''3) 
1^ + ^1 -̂2 + ^2 -̂3 3 

In analogy with our previous treatment of the one-dimensional 

problems, if Y-^{x), V^{y) and V3(z) are all even functions about 

X = 0, y = 0, z = 0, respectively, then F^, F^, and F^ can be 

hosen to be odd real functions of x, y, z respectively. Also c 

the Integrals I^, 1^, and I, are all real quantities. 

The remainder of the procedure can best be illustrated by 

application to a simple cubic lattice of half lattice period a_. 

We consider the origin of coordinates to be at the center of 

the cubic cells. The potential in each cell V(x,y,z) is assumed 

to be separable, isotropic, and with reflection planes at x = 0, 

y = 0, z = 0. For this case we have the periodicity relations 

illustrated by the equation 

P^(a,y,z) = P^(-a,y,z). (114) 

This relation and the symmetry property of F^(x) leads to the 

relation: 
-20 (a) -20 (y) -20 (z) 

X „ y g z 

f(y,z)P=^ U ^ — J (115) 
. J F a F (a) x^ ' 

where 

,-̂  -20 -20 -20 pa -20 
I (a) = / e dx = e ^e ^ e ^dx. (Il6) 

JQ ^O 

Similar relations follow for fp(x,z) and f^(x,y). Thus the f. are 

either real or pure imaginary since all the quantities in (II5) are 

real. Let us assume now that |t(r)| is invariant under the 

reflection symmetry operation. Exceptional cases may arise Just 

as in the one-dimensional problems. However, as was true there. 
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the possible exceptions to the invariance of \f{v)\ under a 

reflection symmetry operation will be apparent in the final band 

structure as limiting cases of the normal situation where \i}i{r)\ 

is invariant. Just as in the one-dimensional case, this symmetry 

property allows us to conclude that the only real values of f̂  

are zero. Hence the allowed energy regions are given by the 

inequalities (the I^ are all positive) 

-20^(a) 
I^(a)F^(a) + e 
x^ ' X < 0, (117a) 

^ F (a) 
x^ ' 

-20^(a) 
I (a)F (a) + e •' 

' ^ F^(a) < « ' (̂ ^̂ ^̂  

-20^(a) 
I^(a)F^(a) -*- e z' 
z ̂  ' z 

F^{a] 
< 0, (117c) 

where 

I (a) = e ""dx, (I17d) 
^ Jo 

â -20. 
e ^dy, (I17e) 

0 

pS -20 
I„(a) = e ^dz. (I17f) 

J o z 

Thus F (a), F (a) and F (a) must all be negative for any allowed 
X y z 

solutions. However, negativity is not enough except that it is 

clear that as all the F(a) go from positive to negative we will 

go from a forbidden region into an allowed region. Furthermore the 

F(a) can change sign by an infinite discontinuity making it 

necessary to use symmetric and antisymmetric functions such as the 

following 
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^x(V^xo'-) = * > S ' ("̂ "̂  

03 I^(x) = 0^, (118b) 

where 0g(E -E ,x) is the symmetrical solution (see Section 9) and 

0.(E -E ,x) is the antlsymmetrical solution of the Schroedinger 

equation, 

•̂'(x) + E ̂  (V^xo-\)^(^)- (̂ 5̂) 
h. 

This requirement in the procedure is no more complicated than in 

the one-dimensional problem and will not be retreated here. 

From equations (105a) we see that F^(a) will be a function 

of E - E where E is a separation parameter involved in the 
X xo xo 

solution of (105a) to get F^. Similarly for F^ and F^. For a 

given lattice parameter 2a, Py^{a.), Fy(a) and F^{a) will have 

zeros or changes in sign through infinite discontinuities. Let 

one such set of zeros take place when 

(120a) 

(120b) 

(120c) 

The sum of these three equations gives 

E =E^+ Ey + E^ = q^ + Qy + q^, (121.) 

since the sum of the separation parameters is zero. Thus by 

examining the values of the energy parameters which satisfy 

inequalities (II7)-actually their counter parts In terms of the 

symmetrical and antlsymmetrical solutions of the separated 

Schroedinger equation - we can map out the entire band system as 

^ x -

^ -

\ • 

- E = q . xo X 

yo " V 

- E = q 
ZO ^ z 
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a function of the lattice parameter or other parameters. ^x^^'\-\o)' 

F fa.E -E ) . and P (a.E -E ) all have exactly the same form, namely y y yo z^ z zo 

that for f (y ,y) already discussed in Section 9 for the corresponding 

one-dimensional problem. Thus the extension to the three dimensional 

simple cubic lattice case is more or less trivial for all Isotropic 

separable potentials with reflection symmetry once the one-dimensional 

problem is solved. 

12. Concluding Remarks 

The method used here should be examined with respect to its 

application to non-cubic lattices and perhaps also for potentials 

which do not have reflection symmetry. The latter could be done for 

a one-dimensional saw tooth potential and the results compared with 
o 

those obtained by Suglyama for a finite chain of saw-teeth with 

infinite potentials at the end of the chain. 

The author feels that the method described also has many 

pedagogical advantages. For example, the one-dlmenslonal parabolic 

scallop potential is simpler than the Kronlg-Penny potential well 

in that discontinuities and concomitant matching difficulties do 

not arise within the cell Itself. The periodicity condition alone 

takes care of matching at the cusps of the potential at the cell 

wall. Also the behavior of the band system as a function of the 

period is more easily brought out in the parabolic scallop potential 

as is the symmetry properties of the eigenfunctions. The method 

also gets down to the fundamental essentials of the matching process 

and thus decreases the complexity of the algebra over that used in 

conventional procedures. 

^Yoshlyuhi Suglyama, Research Reports, Memoirs of the Faculty of 

Engineering, Nagoya University, Vol. 12, No. 1, May I960, pp. 64-72. 
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APPENDIX I 

Theorem III: 

The relation 

\(?) = ̂ k(^) ̂ '^'^ (̂^ 

follows from the two conditions: 

1̂ (5 -̂  J)|2 = |̂ (?)|2 , (2a) 

S(? -I- i) = S(?) . (2b) 

Since the validity of equation (l) clearly Implies the validity of 

equations (2a) and (2b) (See page 5, text), proof of the above 

Theorem establishes the complete equivalence of the Bloch 

condition (l) and equations (2) as criteria for the selection of 

appropriately well-behaved eigenfunctions. 

Proof: Since ̂ (r) is complex in general, we may write it as 

follows: 

Hr) = H(?) + 11(?) = + ^ ^ ^ ^ ^ e^^'^'VR , (3) 

l̂ (r) = f(?) e^s(^) 

where f(r) and g(?) are real scalar functions of the position 

coordinates r = (x,y,z) and where f(?) is restricted without 

loss of generality to non-negative values by the choice of the 

positive square root. For a periodic potential, v(r), the 

following equations must hold: 

V(r) = V(r + i) » Ĉ ) 
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^ ^2 ̂ (j) ̂  {V(?)-E} t(?) = 0 , (5) 

v2 f{v + I) + |v(r)-E| t(r -̂  i) = 0 - (6) -i.2 
2m 

Because of the periodicity (2a) on the position probability 

density, it is Immediately obvious that f(r) is periodic: Thus 

f*{r) fir) = f*{r + I) ^(r H- I) , 

[f(r)]2 = [f(r + i)]2 

and finally, since f(r) is non-negative and real everywhere, 

f (? + '(')= f(?) • (7) 

Also upon applying the periodicity condition (2b) on S to (3) 

we have 

S = _ ^ 2if2 ^ g = ^ f 2 ^ g , (8) 

2im m 

vg(? + l') = vg(?) • (9) 

Equation (9) has only one solution 

g(? + I) - g(?) = C^ , (10) 

where C» is a constant appropriate for the direction i. We can 

further assume J to be the shortest lattice vector in the direction !!<. 

Hence we have shown that the phase of ^(r) advances by a constant 

amount C^. independent of position in the lattice, when one goes 

from equivalent point to equivalent point along any given lattice 

direction. 
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C« may be restricted to the Interval 0 .$ Ĉ  < 2ir or any 

equivalent interval. Let us take the components of the lattice 

vector I to be (i^,^,.^„); then 

g(x-̂ ^̂ , y-Ĥ y, z-fî ) = g(x,y,z) -̂  0{l.^J^J^) . (ll) 

where C is Independent of x,y,z but depends on direction components 

x' y' z 

A general solution for g(x,y,z) which satisfies equation (11) 

is the following: 

C C C 
g(x,y,z) = P(x,y,z; ̂  ,i ,̂  ) - H / X -h/y -(-/ Z , (12) 

^ X y z 

where P(x ,y , z ; l^,!>^.l: \ i s an^; per iodic f\inction of x ,y , z with 
X y z 

periods 1 , 1 , and -2̂  r e spec t ive ly , and where X y z 

C, + Cy -̂  C^ = C ( i ^ , i y , i ^ ) . (13) 

For the purposes of getting a general solution of (11), P(x,y,z) 

can be regarded as a perfectly general periodic function; however, 

it must be restricted to a particular function if V(r) = f(r) e ̂ l̂ i 

is to satisfy the Schroedinger equation (5). From (12) and (13) 

• it follows that 

Hr) = f(?) eiP(^) e ^ y " , (1^) 

^(5) = f(?) eiP(?) ê -̂? = uĵ (r) e^^"^ , (15) 
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where 

X y z 

must satisfy the condition 

V x + V y ^ ̂ ẑ z = ̂ ''' = ̂i '̂̂^ 

but is otherwise arbitrary. Since f(r) e^^'^''^ is periodic, and 

since the choice of the particular lattice vector I was perfectly 

arbitrary, we have proven the theorem. Hence we may use either 

|^(r + i)l2 = |^(?)|2 and S(? -f i) = S(?) , (l8) 

or 

*(?,E) = uĵ (r) e^^-^ ; Uĵ (r + I) = U(̂ (?) (19) 

interchangeably as the criteria for selection of physically 

suitable eigenfunctions. 

For one-dlmenslonal problems, ^-§=0, S=S(x)=constant; 

hence S(r + J) = S(r) is automatically fulfilled for all solutions 

of the Schroedinger equation. In this case |^(x + l)\ = IT('(X) I 

is both a necessary and a sufficient condition for the selection of 

the "well-behaved" solutions. That is, the condition of periodicity 

of |^(x)|2 is completely equivalent to the Bloch condition. 
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APPENDIX II 

p P 

Theorem IV: The criterion, l^(x-H i)| = |^(x)1 , for physically 

acceptable solutions of the Schroedinger equation 

' h *" + (V - E) ^ = 0, (1) 

where 

V(x+i) = V(x), V(x) = V(-x), (2) 

leads to the relation 

l^(x)|2 = |^(-x)|2, (3) 

except for the special case for which there are two equally good 

real solutions; one antisymmetric and one symmetric, iz-^ix) and 

ij/nix) respectively, such that 

f-^ix+l) = a^]_(x), 

ip^{x+i) = af2(^)' Ĉ ^ 

a = ± 1. 

Proof of Theorem: The second order differential equation (l) 

has two independent solutions. Let us choose two particular sol­

utions -̂̂ (x) and iJ^ix) such that they obey the following initial 

conditions: , , , , 
^ (0) = 0; ^'(0) = 1, 

(5) 

^2(0) = 1; *2(°) = °-

Since V(x) is a real function and since the energy and the other 

parameters and constants occurring in (l) are real, the above 

initial conditions insure that f-^{x) and ip^ix) are both real 

functions. Furthermore -̂̂ (x) is an odd function and f^{x) is even 

This follows from the evenness of V(x). Hence, 

fj-x) = -^-.(x), 

(6) 

^2(-x) = ^2(^)-
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Now f-^{x+l) and f,^{x+Ji) are also solutions of (1) because of 

the relation V(x+.«) = V(x). Since there are only two independent 

solutions we must have 

i/^{x+£) = a-[_ ̂ -,_(x) + a2 1^2^^'^' 
(7) 

fr,{x+£) = P-L ̂ -̂ (X) + P2 f2^'^^-

f-^ix), f^{x) and hence f-^ix+l) and f^ix+l) are all real; the con­

stants a , Qg, P;L ^^"^ ^2' which must have very particular values 

for each eigenvalue E, are also all real numbers. This follows 

from the linear independence of -̂|_(x) and ^2^^^' since 

a-̂ ^̂ (̂x) + a^jip^^x) and p.-^jf-^{x) + fi^fl'^^x), the imaginary parts 

of the right sides of equations (7), can be zero only if the a's 

and P's are real. 

Let X ^ -X in equations (7) and use the symmetry properties 

of -̂, and ^„. Thus we obtain 

f^i-x+i) = -fAx-i) =-a^^^(x) + ttg^g^^)' 

(8) 

^2(-x+.e) = ^2(^"-^) =-Pi*l(x) + p2*2(^)' 

Now let X -^ x+l, in equations (8) and use equations (7)- We ob­

tain the following equations: 

-i/j{x) = - a^[a-^f^{x) + a2^2(^)] + ci2'̂ l̂*l(̂ ) + P2*2(^^-'' 

^2(x) = - ^-^_[a.-^fi{x) + a^ip^i^)'^ + ?'2^P'ii^x^^'> + P2*2(^^^' 

and, since -̂.(x) and fJ^^) are linearly Independent, 

(9) 

2 
a-^ + o.^^-^ ; 0 = - a-^a^ + ':i'^2' 

2 
^1°2 ^ ^2 ^ "̂  = " Pl'̂ l + ^2^1' 

(10) 
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A general solution of the wave equation is given by 

fix) = A^-^(x) + B^2(^)' (̂ 1) 

where A and B are arbitrary constants, real or complex. Also 

(12) 
fix+Jl) = Af-^ix+Ji) + Btp^iy^+l), 

fix+{,) = (Aa-̂ -tBPg) ̂ i(x) -t- (Aa2-t-BP2) ^2(^^-

The particular linear combinations we are seeking must satisfy 

the following equations: 

\fix+i)\^ = U(x)|2 , (13a) 

KAâ -l-BP3_) f-^ix) + (Aa2-HBP2) 1^2^^)^'^ = I A % ( X ) -1- B*2(^)l^' (̂ 3b) 

^-j_2(x)[AA*a^2 _^, (AB*-I-A*B) â p.̂  -I- BB*P-^2] | '/'-̂ (̂x) AA* (13c) 

+ + 
•f^ix)f2i^)[kk*2a^a-2 + (AB*-l-A*B)(â P2+°'2Pl)+BB*2P-̂ P2ji= f-^ix)f2i^ik&+k*B) 

+ + 

T^2^(x)[AA*a22 -1- (AB*-l-A*B)a2P2 + BB*P22] j ^2^(x) BB*. 

Prom the fact that ^^(o) = 0 and ̂ 2(0) = ^' "® conclude immediately 

the the coefficients of f^ix) must be equal on the right and 

left sides of the last equation, and then because of the inde-
p 

pendence of TpAy^) and f^'^x) the coefficients of 1//̂  (x) and of 

^.,(x)^p(x) must also be equal on both sides. Hence we have the 

relations which the A and B must satisfy in terms of the a's and 

P's; the latter, of course, are determined by the form of the po­

tential and by the energy E: 

AA*(a-j_2-l) -1- (AB*-tA*B)3^P^ + BB*P^2 ̂  Q, (l4a) 

AA*2a-^a2 + (AB*-tA*B) (a^P2+"2Pl-^) + BB*2P-^P2 = 0, ' (l4b) 

AA*a22 -1- (AB*-HA*B) a2P2 + BB*(P22-l) = 0. (l4c) 
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If no linear combination of ?//̂ (x,E) and ^2^^'^) exists which sat­

isfies (13a) other than that for which A=B=0, then E is not an 

allowed energy of the system. If, however, combinations exist 

satisfying (13a) for which one or both of the constants A and B 

are not zero, then E is an allowed energy. 

Using equations (10) we may rewrite equations (l4) as 

follows: „ 2 / T r- \ 
AA*n2pi + (AB*+A*B) a^fi-^ + BB*P-^ = 0 , (15a) 

AA*2a^a2 -f (AB*+A*B) (G]_P2+^2^1-1) + BB*2P-^B2 = 0 , (15b) 

AA*a22 + (AB*+A*B) a2P2 + B-B*^^^^^ = 0 . (I5c) 

Clearly, if an exception exists such that 

l^(x)|2 ^ |^(-x)l2 , (16) 

then AB* + A*B / 0, since 

|^(x)|2 = AA*^3_^(x) + (AB*+A*B)^^(x)^2(^) + ^^**2 (̂^ ' 

and 

l^(-x)l2 = AA*^-^^(x) - {KB*+R*B)fjix)f^ix) + BB*^2 (^)-

Hence, neither A nor B can be zero. That is, none of the 

constants AA*, AB*+A*B, BB* in equations (15) can be zero. The 

only set of values of a^,ra2, P-|_, P2 which is possible with this 

limitation and those contained in equations (lO) is: 

a-, = P„ = a = ± 1 , 
1 2 (17) 

rj.^ = ^1 = 0 

Hence, whenever we have 

f-^ix+l) = a^^(x) ^ 

2̂(x-t.e) = a^2(^), (18) 

a = + 1 , 
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a completely general solution, 

fix+Ji) = A^-^(x) + B^2(^)^ (̂ 9) 

satisfies the periodicity on the probability density 

^(x+.«) = a^(x) , 

? ? (20) 
l(x+^)|2 = |^(x)|2 

but for general A and B values the inequality holds in the re­

lation 
l*(-x)|2 / |^(x)|2 

The exceptional case can occur only on the edge of a band 

since Wilson(2) ^^^ ghown that the periodicity or antiperiodlcity 

of the elgenfunction 

fix+H) = aV/(x) = ± fix) (21) 

holds only a t the boundary separating allowed and forbidden 

energy bands. 
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APPENDTX III 

Given the following relations: 

V"(y) + {7 - V(y)[ ̂ (y) = 0, (la) 

V(y) = V(-y), (lb) 

V(y + 2y^) = V(y); (ic) 

we wish to find the appropriate solutions fiy,Y) which have the 

property that 
|2 , . , , . „ , o,. M 2 \fiy,j)r = \Ay,i + 2 y „ ) r . (2a) 

o' 

This may be wr i t ten equally well in the form 

*(7,y + 2y^) = e^%(7 ,y ) . (2b) 

In Appendix I it is shown that 6 is Independent of y. 

Also, in order to have physically meaningful solutions, the 

logarithmic derivative f ij)/fiy) must match across all discon­

tinuities in V(y) or its derivatives and it must be periodic with 

the period of the lattice. Hence 

^•(7,y) _ riy,y + 2j,) 
^(7>y) ^(7»y + 2y^) • ^-^ 

Let the general solution of (la) be written as a linear combin­

ation of a symmetrical solution, 0„, and an antlsymmetrical sol­

ution 0., where 

0g(7,o) = 1; 03,(7,0) = 0, (4a) 

0^(7,0) = 0; 0^,(7,0) = 1, (4b) 

*(7.y) = A03(7,y) + B0^(7,y). (4c) 

Independent solutions of the form of 0„ and 0. always exist for 

even potentials V(y). The solution (4c) is assumed to be valid 
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in the region -|-ŷ  + 0, + y^ - Oj". If there are any discontin­

uities or lack of smoothness in V(y) inside the region ^-y^, y^ 

we assume that the piecewise solutions have been matched across 

the discontinuities to give (4c). We now impose conditions (2b) 

and (3) at the point y = (-ŷ  + 0) to equation (4c). 

Application of (2b) leads immediately to the following re­

lations : 
le 

^(y +0) = e- ^f{-y +0), (5a) 

It 
^(y +0) = e >(y„-0), (5b) 

o 
i(e -e ) 19 

^(y -0) = e -̂  ^ ̂ (-y„+0) = e >(-yQ+0), (5c) 
' o 

1' 
'^°{A03(yo) - B0^(yj[ = {A0s(yo) + B0^(yj}, (5d) 

(yJ ie''°-l|= B0,(yj{l+e'H, (5e) 
"̂ Ŝ ''o 

-1- 1 A siney2 <t>^iy^) = B cos 9J2 0^(yo)- (5f) 

Equation (5b) is necessary because the value of the elgenfunction 

just inside the next cell to the right of y = y^ is not necessar­

ily the same as the value of the elgenfunction immediately to 

the left of y = y • For a discussion of this point refer back 

to Section 5, Equation 31a. 

Application of condition (3) gives 

A0' + 

A0g + 

A0^4-

A03 + 
(6a) 

+^0 

A203(y^)0'(yJ = B20^(yj0^(yJ. (6b) 

We now consider the possible cases separately where either A or 

B is zero (obviously both cannot be zero) and where neither is 
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0, B ?̂  0 

^(y) = B0^(y) in j-y^ +0, ŷ  -o[ 

In this case B can be taken to be real in the sample interval 

centered on y = 0. From this it follows that f is real every­

where ii/ real over a finite Interval can never become complex), 

Hence 1' 
0 or TT. Since 0„(y) is odd. TT. It follows 

that (5f) is automatically satisfied while (6b) requires either 

^^(yo) = 0 or 0ĵ (ŷ ) 

V^o-O) = ° 

Thus we have: 

;'A(yo-o) ^ 0 

*^(yo+o) = ± *A(yo-°^ 

;>A(yo-o) = 0 

^ y o - o ) ^ ° 

PkiVo+O) = 0 
PAy^+o) = ± *„(y„-o). 

Hence (̂y-f2y ) looks just like ^(y) or is its negative. Hence 

^(y) is an odd periodic function about y = 0 and about the other 

reflection symmetry points ± n2y^ with period 2y^ or ky^. That 

is to say, ̂ (y) = B0„(y) is either a real periodic or a real 

antiperlodlc function. 

An exactly similar situation arises for the case where 

A /̂  0, B = 0. Here the elgenfunction is an even periodic func­

tion, ^(y) = A03(y), with either 03(yo) = 0 or 0^(yQ) = 0; 

9-. , e„ = 0 or TT and 6 = 0 . Ignoring the possible shift of phase 

of e„ = TT, which has no physically observable consequencles, in 

going from one cell to the next the solution 0 (y ) = 0 corres­

ponds to an antiperlodlc symmetrical solution (period 4y ) and 

b'iy ) corresponds to a periodic symmetrical solution. 
o O 
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Now consider the case where neither A nor B is equal to zero. 

2 2 
Prom (6b) we see that A /B is real; hence A/B is real or pure 

imaginary. 

First let 

then 

A/B = 1 C; (7a) 

where C is real and cannot be zero or infinity. Hence 

V ^ o ) *A(yo) 
*s(yo) ^^yo^ 

There are two possibilities in relation (8): (l) none of the 

terms are zero and (2) the pairs 0^(y), 0^(y) and 0^(y), 03(y) 

go to zero together as y approaches y . For the latter cases 

we have 

and 

n ( y o ) I *A(y) ^^ (^0^^^ 1 (g^) 
^^(yj y-yo W^ [03(y„) f |v(y^)-7f 

V y p ) L *A(y) [Vyo)3^jv(yo)-7^ 
W ^ y^O ? ^ ' [0. (yJ ]2 

(9b) 

For these exceptional cases of juxtaposition of zeros to occur 

when A/B is pure Imaginary it is necessary that 7 > V(yj^). Also 

when 0^(yQ) = 0 we see from (5f) that 6̂  = 0. [0s(yo) and 0;̂ (yQ) 

cannot be simultaneously zero otherwise the Wronskian 

W = 0g0^ - 0^0^ = 1 (10) 

would not be constant.] Hence both 03(y) and 0^(y) are periodic 

again ignoring the possible phase shift across y^, and 
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fiy) = B ( i C 0g -H 0^) 

y/(-y) = B ( i C 0g - 0^) 

i ^ ( y ) | 2 = | B | 2 [ c 2 02 + 02] = = \fi-- y ) | 2 

( l l a ) 

( l i b ) 

( l i e ) 

When both 03(yg) and 0ĵ (yo) are zero, 0^ = TT, and both 
Q p 

0_(y) and 0;(y) are antiperlodlc. As before |V(y)l = l^(-y)l • 

Finally we examine the case when A and B are not zero but 

have a real ratio. Prom (5f) we see that either <t>p^iy^) = 0 and 

e = 0, or 0„(y ) = 0 and 9^ = TT. From (6b) we must also have 

0^(y^) = 0 when 0^(yQ) = 0 and 0^(yQ) = 0 when 03(yQ) = 0. These 

pairs of zeros can occur for real A/B only when 7 ̂  V(yQ). As 

before the solutions correspond to situations where both 03 and 

0. are periodic or antiperlodlc. In these cases, and only in 
p 

these cases, there is an exception to the evenness of Ifij)\ 

about the reflection symmetry points. 

In summary relation (8) may be generalized to include all 

cases discussed. The result is: 

The loci of all points of 7 vs. y obtained from the equations: 

0^(7,yo) = 0; 0^(7,yo) = 0; <l>^i7,y^) = 0; 0^(7.yo) = 0 (13) 

will give the boundaries of the allowed bands. The boundary 

curves 0„(7,y-) and 0o(7,yQ) may touch, coalesce, or Intersect, 

and likewise the curves 0o(7,y ) and 0i(7,y ). If they do this 

in a region for which 7 .̂  ̂ (yo) then an exception may arise to 

the evenness of the probability density. The next paragraph 

further discusses this point. All other situations correspond 

to the Inequalities in (12) and \fij)\ is even. 
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The energy band structure of 7 vs. y^ is a general property 

of the shape of the potential and should be independent of any 

linear translation of the coordinate y. Hence for all potentials 

such as those considered here where there is a lower bound a 

translation of the origin can be made such that y appears at 

the lower bound and all 7 under consideration are greater than 

or equal to "V(y )• If this translation does not destroy the 

reflection symmetry assumed for V(y) then all our previous anal­

ysis holds and in this case if two boundary curves of 7 vs. y 

cross or touch they will always do so within the limits of equation 

(7b) and |^(y)|2 will be equal to |^(-y)|2. It is clear that 

all of the potentials considered in this report fit the conditions 
p 

outlined. Hence no exceptions to the evenness of \fiy)I arise. 

It is also useful to demonstrate the Bloch k value for our 

solutions. Let us eliminate A and B from equations (5f) and 

(6b). The result is 

-^- — - -^AV'^O^^S^^O Sln2 ̂ = -0,(yj0l(yJ. (1)+) 

N O W from (5c) one notices that the phase advance of ^(y) in going 

from -y to +y is Just -9^. Since the phase advance per period 

is constant (see Appendix I ) , -9^ is the phase advance per lattice 

period independent of position. From the Bloch equation the phase 

advance per unit length is k. Hence 

. 2 sm 

-e^ = k2yQ, (15) 

ky^= -*A(yo)'^s(yo)- (1^) 

When 0A(yo) or 0^(yo) equals zero, k = 0, and when 0s(yo) or 

*A(^O) equals zero, k = ^ . 
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